BRITISH MATHEMATICAL OLYMPIAD

Wednesday 16th January 1991

Time allowed - Three and a half hours

Instructions: •

- Start each question on a fresh sheet of paper.
- · Write on one side of the paper only.
- On every sheet of working write the number of the question in the top left hand corner and your name, initials and school in the top right hand corner.
- Complete the cover sheet provided and attach it to the front of your script, followed by the questions 1, 2, 3, 4, 5, 6, 7 in order.
- Staple all the pages neatly together in the top left hand corner.
- 1. Prove that the number

$$3^{n} + 2 \times 17^{n}$$

where n is a non-negative integer, is never a perfect square.

[4 marks]

2. Find all positive integers k such that the polynomial $x^{2k+1} + x + 1$ is divisible by the polynomial $x^k + x + 1$.

For each such k specify the integers n such that $x^n + x + 1$ is divisible by $x^k + x + 1$.

[5 marks]

 ABCD is a quadrilateral inscribed in a circle of radius r. The diagonals AC, BD meet at E.

Prove that if AC is perpendicular to BD then $EA^2 + EB^2 + EC^2 + ED^2 = 4r^2.$ (*)

Is it true that if (*) holds then AC is perpendicular to BD? Give a reason for your answer.

[6 marks]

4. Find, with proof, the minimum value of (x + y)(y + z) where x, y, z are positive real numbers satisfying the condition

$$xyz(x+y+z)=1.$$

[7 marks]

5. Find the number of permutations (arrangements)

$$p_1, p_2, p_3, p_4, p_5, p_6$$

of 1, 2, 3, 4, 5, 6 with the property:

For no integer n, $1 \le n \le 5$, do p_1 , p_2 , ..., p_n form a permutation of 1, 2, ... n.

6. Show that if x and y are positive integers such that $x^2 + y^2 - x$ is divisible by 2xy then x is a perfect square.

[9 marks]

7. A ladder of length *l* rests against a vertical wall. Suppose that there is a rung on the ladder which has the same distance *d* from both the wall and the (horizontal) ground. Find *explicitly*, in terms of *l* and *d*, the height *h* from the ground that the ladder reaches up the wall.

[10 marks]